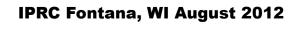


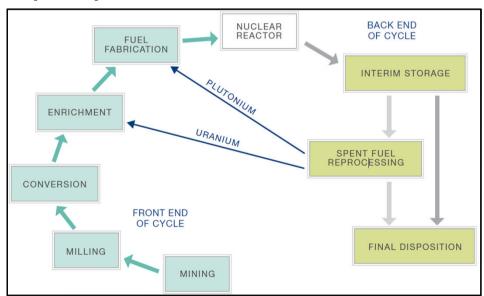
Salt Preparation and Reconditioning for Accelerator Driven Subcritical Fission in Molten Salt (ADSMS)


E. Sooby¹, J. Gerity, P.¹, McIntyre¹, S. Phongikaroon³, N. Pogue¹, and M. Simpson²

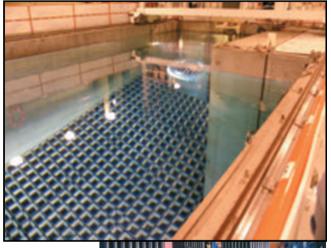
¹Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station TX 77843

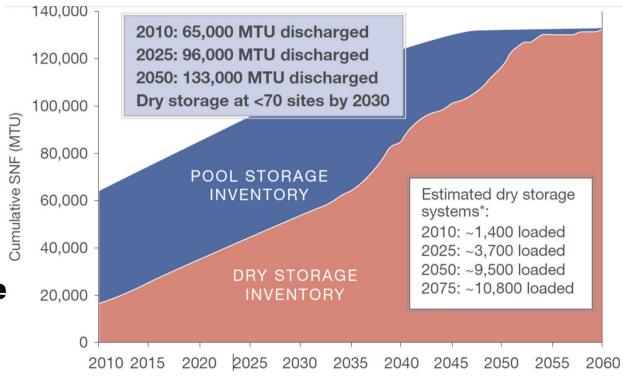
²Idaho National Lab, P.O. Box 1625, Idaho Falls ID 83403,

³Chemical and Materials Engineering and Nuclear Engineering Program, University of Idaho, Idaho Falls ID 83402



Used Nuclear Fuel (UNF) and The Fuel Cycle


- UNF is stored on location in water ponds and dry casks.
- In this form it would remain hazardous for thousands of years.
- The only way to remove those hazards is to literally destroy them by fission for the transuranics (TRU).

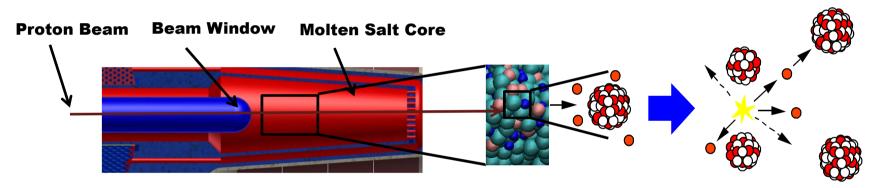

A Call for Waste Disposal

 U.S. Used Nuclear Fuel Inventory:

Currently
 67,000
 Metric Tons
 of UNF in
 storage

Growth Rate of ~2000
 Metric Tons per year

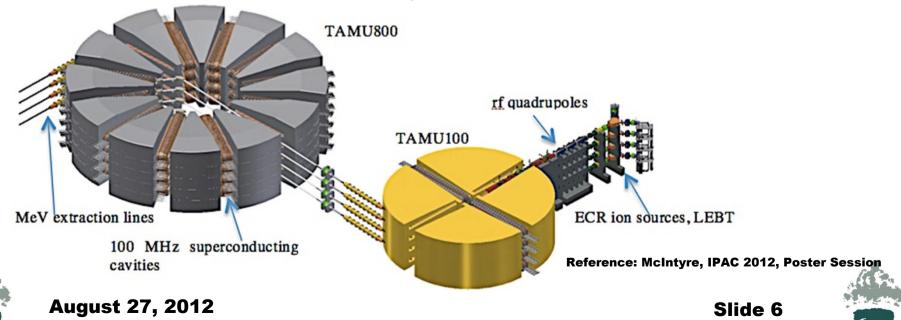
Benefits to ADSMS


- ADSMS can destroy the transuranics (TRU) at a rate equivalent to their production in conventional reactors.
- It is a green and profitable technology.
- The core is sub-critical with all its fuel dissolved in a molten salt matrix; therefore, it cannot melt down in a conventional sense.
- It uses used nuclear fuel as its power source to produce hundreds of Megawatts of power.
- It can incinerate the long-lived radioactive waste that is produced by conventional reactors.
- It can recycle used fuel into fertile fuel for conventional reactors.

Accelerator Driven Systems

- Why an accelerator?
 - An on-off switch to fission.
 - Capable of operating subcritical
 - Can run off of UNF
- Fission Driven by Spallation Neutrons

- Fast neutron source from 800 MeV Proton Beam
- Flux Coupled Stack of Isochronous Cyclotrons
 - 1 footprint
 - Redundancy → reliability
 - Sustainable driver for fission cores



Accelerator Complex

- Injector
 - 2.5 MeV proton beam is fed to the TAMU 100.
- TAMU 100
 - Produces a 100 MeV proton beam is fed to the TAMU 800.
- TAMU 800
 - 10 mA beam from each cyclotron is chopped at injection and then separated into 3 beams after extraction from TAMU 800.
 - The 4-stack of cyclotrons can produce 12 2.7 MW beams.
- 12 beam lines
 - Each beam can drive an 65 MW_{th} ADS molten salt core.

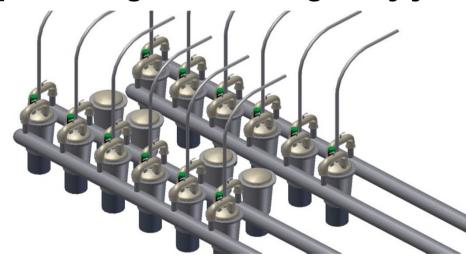
Accelerator Technology Advances

Flux Coupled Stack

 Strong Focusing Cyclotron

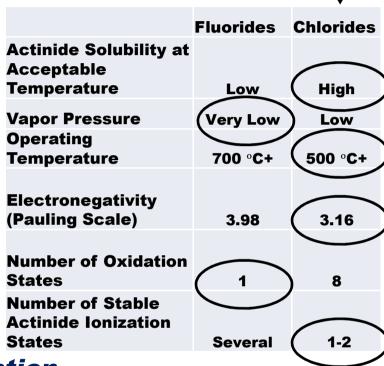
Quadruple focusing channels at the magnet pole faces

 Novel Design for Superconducting RF Cavities



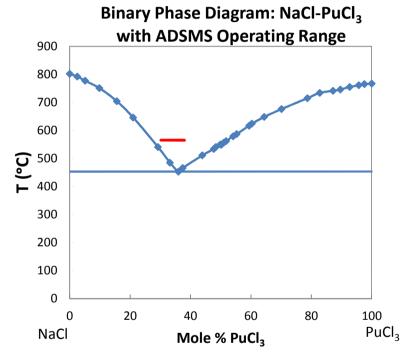
Molten Salt Fission Pot

- 12 Molten Salt Pots
 - 65 MW_{TH} Each
 - Produce 300MW_E together
 - Energy gain of 5.3 taking into account thermalelectric conversion and the efficiency of the accelerators
 - Together they can burn the contents of an AP1000
- NaCl-Based Molten Salt
 - NaCI 69%
 - TRU (0.878) +Lanthanides (0.122) = 31%
- Salt processing and refueling every year



Chloride Molten Salt System

- Why Chlorides?
 - High actinide solubility
 - Compatibility with very fast neutronics
 - Stable operating temperature range ~500-700 °C
 - Low chemical corrosiveness
- Why not Chlorides?
 - Cl³⁶ Production
 - Solution: Isotope Separation (USEC)
 - Complex chemistry
 - Multiple oxidation states
 - Limited Experimental Data

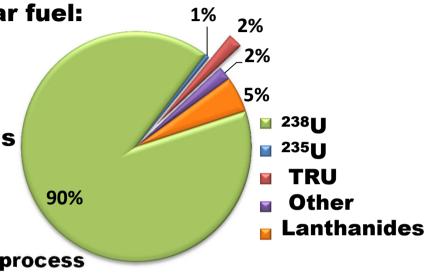


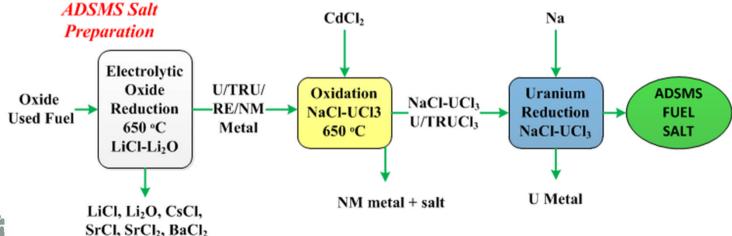
Chloride Molten Salt Systems

LiCI-KCI

- Pyroprocessing advantages
- Wealth of available data
- Secondary Salt
- Not suitable for primary salt
- KCI
 - n,α reaction, ³⁶Cl production
- MgCl₂
- NaCl
 - High actinide solubility
 - Well modeled
 - Primary Salt Choice

Reference: Bjorklund, et al, 1959.

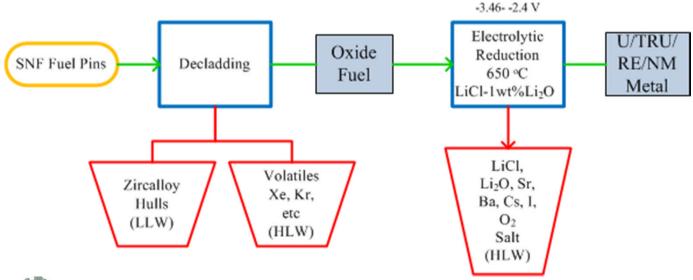

Fuel Salt Preparation



- Preparation of Oxide Spent Nuclear fuel:
 - Electrolytic Oxide Reduction
 - Rare Earth and Actinide Oxidation
 - Uranium Reduction
- Avoids typical proliferation hazards
 - Non-aqueous
 - 1 Pot Process

August 27, 2012

- No segregation of Pu
- Radioactive lanthanides remain with the minor actinides throughout the process


Electrolytic Reduction

- Developed at ANL and INL
 - LiCl-1wt% Li₂O
 - Uranium, TRU, Noble Metals, and Rare Earth Reduction in Cathode Basket
 - >90% Reduction of TRU

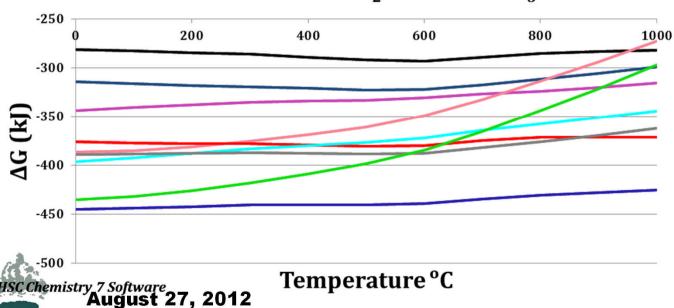
Oxide Fuel before and after Voloxidation

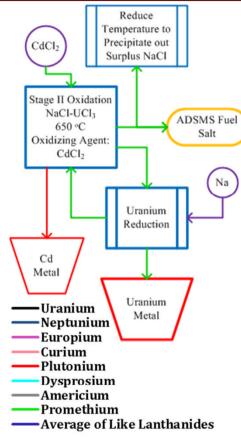
Sintered Oxide Fuel

Post Electrolytic Reduction of Oxide Fuel

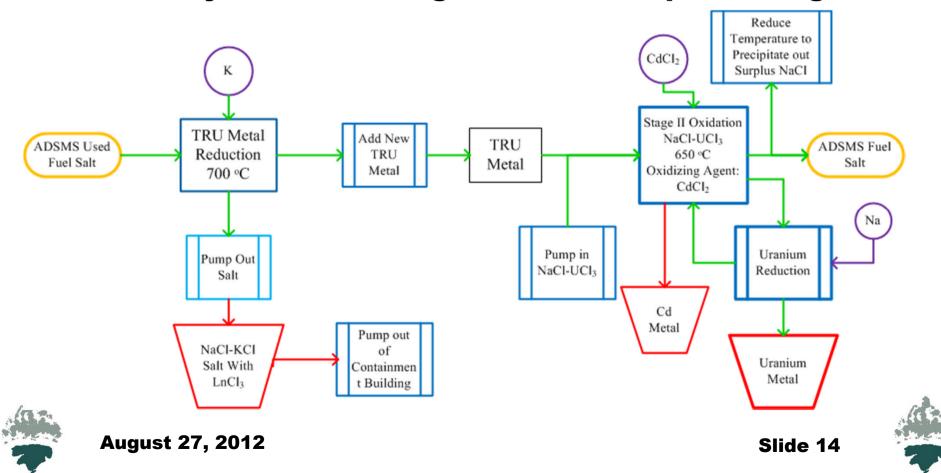
August 27, 2012

Slide 12



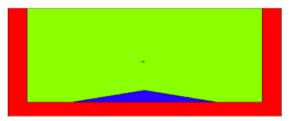

Heavy Metal Oxidation

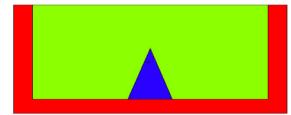
- CdCl₂ Oxidation
- Lanthanides Oxidize first
- Uranium oxidizes last of the Actinides
- Noble Metals are left as waste product
- UCl₃ can provide lower melt temp for operation.



Molten Salt Reconditioning

- Similar steps as Salt Preparation
- Potassium reduction helps to keep lower operating temperature and avoid salt freezing
- Criticality concerns mitigated via batch processing


Criticality Concerns During Reconditioning


- During reconditioning, TRU is reduced into metal form from the molten salt.
- Criticality calculations were performed with the Monte Carlo code MCNPX for several vessel designs and deposition scenarios.
- Critical mass calculations are sensitive to:
 - Deposition Geometry
 - Dendrite formation or preferred TRU deposition decreases the critical mass
 - Vessel Design
 - Bucket Shape
 - Infinite lattice geometry- series of individual cells can be modeled and share neutrons
 - Absorber width and placement
 - Hafnium wall thickness has an exponential on criticality- diminishing returns

Uniform deposition Critical mass: 168.3 kg

Cone half-angle 75° Critical mass: 35.1 kg

Cone half-angle 15° Critical mass: 14.4 kg

Conclusions

- Proposing a power producing solution to the nuclear waste problem.
- Making innovative advances in accelerator technology.
- Actively seeking
 - Experimental and modeling support, suggestions, and lessons learned and
 - Collaborations to assist with actinide salt experiments, corrosion, and radiation damage testing.

The ADSMS Collaboration

Texas A&M University:

Physics: Saeed Assadi

Karie Badgley

William Baker

Austin Baty

Justin Comeaux

Tim Elliott

James Gerity

Ray Garrison

Joshua Kellams

Al McInturff

Peter McIntyre

Nate Pogue

Akhdiyor Sattarov

Elizabeth Sooby

Mechanical Engineering:

Ted Hartwig

David Foley

Shreyas Balachandran

Chemistry:

Abraham Clearfield

August 27, 2012

Nuclear Engineering:

Marvin Adams

Pavel Tsvetkov

Idaho National Lab:

Michael Simpson Prabhat Tripathy

University of Idaho:

Supathorn Phongikaroon

Brookhaven National Lab:

Ilan Ben-Zvi

Bill Horak

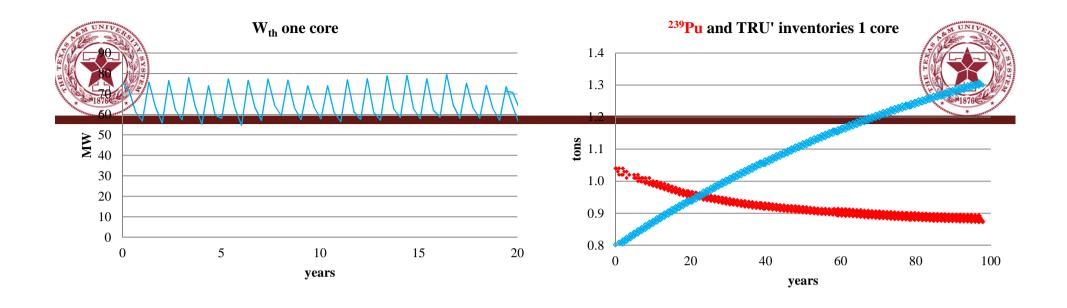
Hans Ludewig Francois Meot

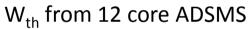
Deepak Raparia

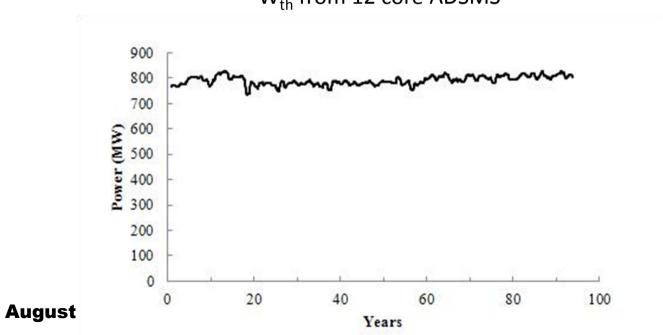
Nick Simos

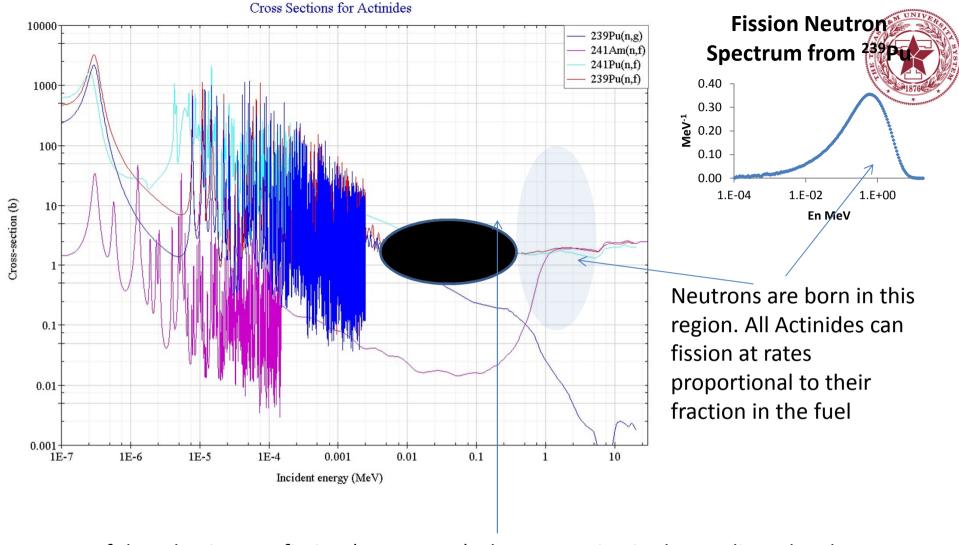
Mike Todosow

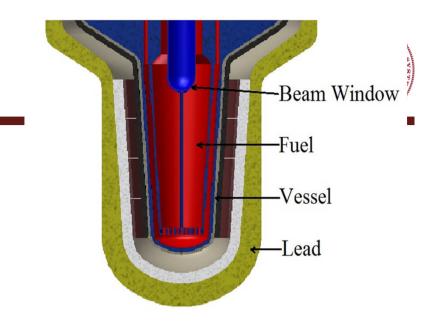
Bill Weng


Questions?









If they do give any fission (no capture), they scattering in the medium they loose their energy, move this way on the plot. Only ²³⁹Pu can fission !!!

Outside second region capture becomes also important and as a result one starts to breed back minor actinides. We need ultra fast neutrons in the core, smaller core!!!!

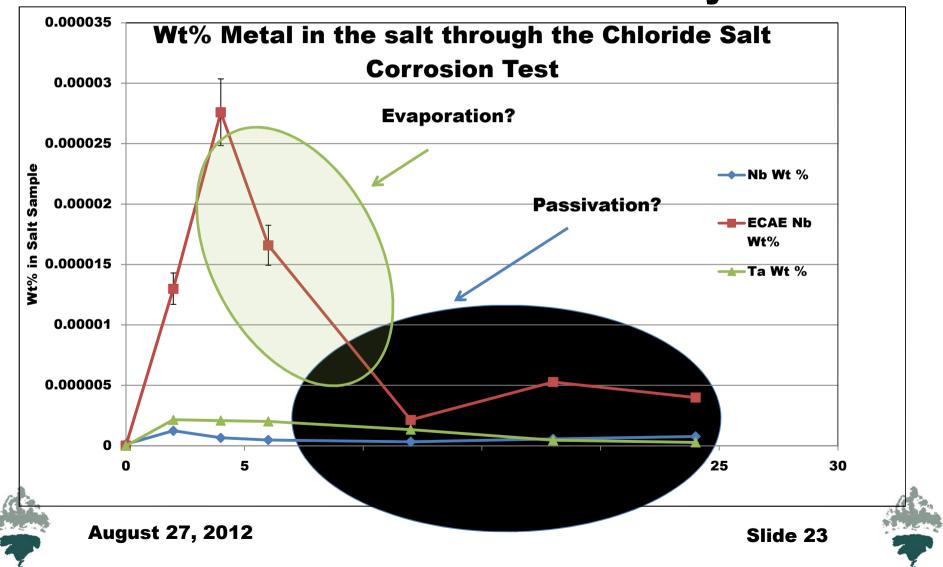
W _{th} , MW	800
Proton Beam	4, 800MeV, 10mA
Total flux, 10 ¹⁵ cm ⁻² s ⁻¹	1.3
Fast fraction, n _f	28%
k _{eff}	0.96
Burn Up (GWd/tHM)	500 (100y)
T _{melt} , °C	515
Composition	31%(TRU+La)Cl ₃ 69%NaCl
Density, g/cc	3.142
Total load, t	22.2 (56 in 100y) Actinide
Power density, W/cc	165W
T _{in} /T _{out} , °C	565/575

Main vessel dimensions	
Inner radius	0.32 m
Height	1.5 m
Outer radius of downflow	0.27 m
tube	
Thickness of downflow tube	0.0254 m
Manifold plate thickness	0.01 m
Wall material/Thickness	
Ni	0.00635 m
Hastelloy-N	0.0127 m
HT-9	0.0254 m
Ni Beam line and beam "windows"	
OD	0.26 m
Beam window shape	half sphere
Thickness	0.003 m
Absorber/Reflector	
B ₄ C	0.48 m radius, 0.1 m thick
Lead	0.65 m radius, 0.3 m thick

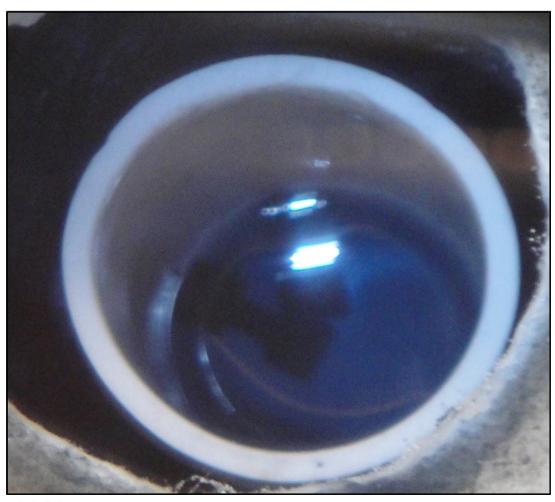
Objectives of Corrosion Testing

- Identify corrosion resistant materials in chloride molten salts
- Quantify the effect of various oxygen concentrations in the salt
 - Mimic realistic operating conditions
 - Simulate worst-case scenarios
- Control the environment and suppress corrosion
 - Monitor and stabilize redox potential in the salt
 - Cathodic Protection: Naval Ships and your Hot Water Heater
- Combine molten salt corrosion with neutron damage effects
 - Swelling
 - He Embrittlement

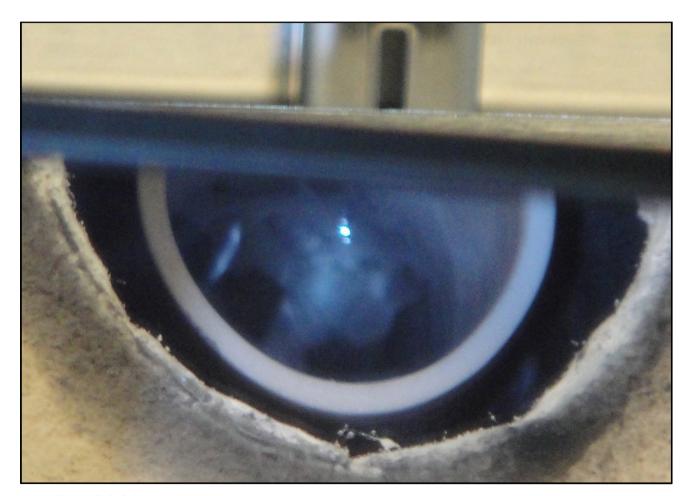
Centrifugal pump operated continuously for one year in molten salt at 500 C



Initial Mass Spectroscopy Data


A clear trend was seen in the refractory material:

2) Blue salt: Zircaloy Exposure in Chloride Salt, t=2hr



3) Stainless Steel Exposure in Chloride Salt, t=6hrs

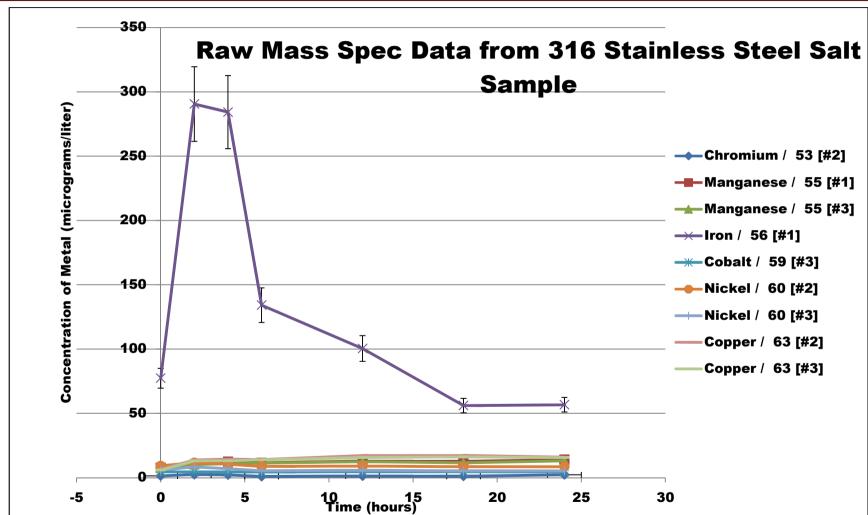
Initial Testing at the Center for Advanced Energy Studies

- Baseline corrosion test:
 - LiCl-KCl and LiBr-KBr
 - 11 different materials
 - Inert, argon glove box
 - 24 hour experiments
 - Each experiment run at 700 °C
- Samples:
 - 6 samples per metal
 - 3 samples per salt compound
 - 1 Control
 - 2 Exposed to salt
 - All samples were etched and prepared in the same manner
- Salt and Materials Characterization
 - Inductively Coupled Plasma Mass Spectrometry
 - Scanning Electron Microscopy
 - Tension Test

Sample Prep and Experimental Controls

- Etched according to ASM Handbook recommendations
- Rinsed with nano-pure water then dried using isopropyl alcohol and baked at 150 °C
- Exposed to salt for 24 hours
- Salt samples taken at 2, 4, 6, 12, 18, and 24 hours
- Same operating temperature for each experiment
- Eutectic salt cations remained consistent, i.e. LiBr-KBr and LiCl-KCl

Future Corrosion Work


- Continue salt analysis and evaluate precision of results
- Experiment with sample preparation techniques
- Next round of corrosion tests:
 - 500 hours
 - Like materials for corrosion crucible and coupons
 - Nickel and Nickel Alloys in comparison with Stainless Steel
 - Gas monitoring of a closed system
- Radiation damage of testing of Nickel and Nickel Alloys
 - Simulate He embrittlement
 - Assess possibility to use Hastelloy-N or Pure Nickel for both vessel and heat exchanger tubing

Slide 28

Initial Mass Spectroscopy Data

We are seeking collaborators!

- Neutronics
- Molten salt chemistry /corrosion
- High-power spallation targetry
- Beam dynamics strong-focusing cyclotron
- Superconducting magnetics
- Superconducting RF
- Fuel cycle simulation/optimization
- Counter-flow heat exchanger
- Safety analysis, what-if scenarios

Please contact us - mcintyre@physics.tamu.edu

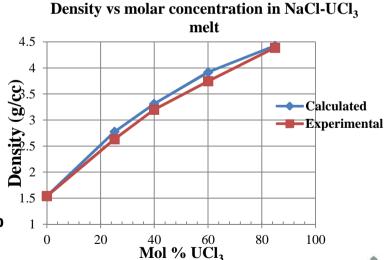
Metal Samples Tested:

Initial Observations Made

- Niobium
- ECAE Niobium (Equal Channel Angular Extrusion)
- Tantalum
- Nickel
- Zircaloy (two types)
- 316 Stainless Steel
- Tungsten
- Hastelloy-N
- HT-9 Steel
- T91 Steel

- Salt changed colors in a number of experiments
- Often times a metallic film appeared to cover the bottom of the crucible
- Vapor formed through the duration of the bromide studies
- Any wire used in early iterations of the experimental set up had clear vapor effects-color change and hardening

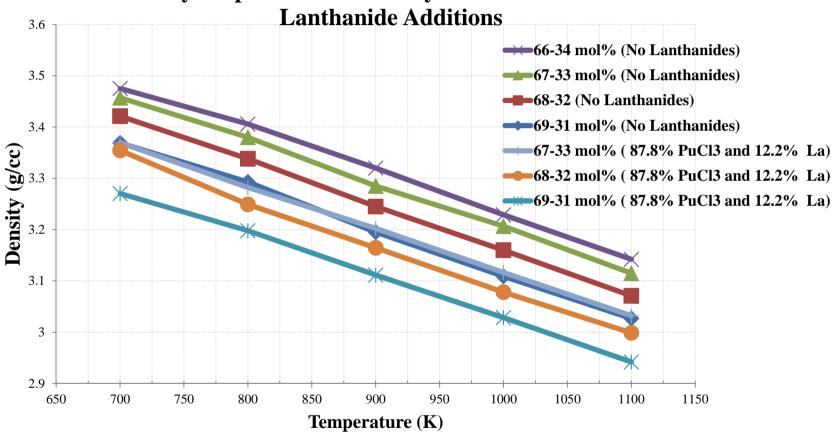
Tungsten Salt Column after Test (LiBr-KBr)
August 27, 2012


Modeling and Experimentation: Bridging the gap in data

- Molecular Dynamics Modeling:
 - lonic structure of a molten salt
 - Interaction Potentials: forces describe the salt's behavior
 - Intermolecular Bonds, Repulsive Forces,
 Dispersion, Electrostatics, and Polarization
 Effects
 - Solves the equations of motion at every time step
- With this program, we can calculate:
 - Density: We have already implemented this in our neutronics calculations
 - Heat Capacity
 - Diffusion Coefficients
 - Viscosity
 - Thermal Conductivity
 - Electrical Conductivity

Reference:: 1. N. Ohtori, M. Salanne, and P. Madden. J. Chem. Phys. 130, 104507 (2009).

2. M. Salanne, C. Simon, P. Turq, and P. Madden, *Journal of Fluorine Chemistry* 130 (2009) 38-44.


A P

Density Calculations

Density Map of NaCl-PuCl3 System with and without

